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LETTER TO THE EDITOR 

Superfluid quark matter 

D Bailint and A Love$ 
f School of Mathematical and Physical Sciences, University of Sussex, Brighton BN19QH 
t Physics Department, Bedford College, University of London, Regent’s Park, London 
NW1 

Received 19 June 1979 

Abstract. Assuming that ultra-dense matter behaves as a fluid of quarks rather than 
hadrons, we investigate the possible superfluid order parameters which may arise. 

It has been suggested (Collins and Perry 1975) that at densities of the order of one 
baryon per cubic fermi, matter will exist as a system of quarks rather than a system of 
hadrons. The reason for this is that the long-range forces which normally confine 
quarks to hadrons are screened by the many-body effects of the medium. Attempts to 
calculate the density at which the hadronic matter to quark matter phase transition 
occurs have been made by a number of authors with results in the range 
10’’ g cmF3. (See, for example, Baluni 1978, and references therein.) The significance 
of this observation is that densities of this order may be attained in neutron star cores, 
and in the early universe. They may also be attainable in the laboratory in collisions 
between heavy ions, since ordinary nuclear matter has a density of about l O I 4  g ~ m - ~ .  In 
this Letter we investigate possible superfluid order parameters for quark matter; 
Cooper pairs of quarks may be formed by the short-range force between them, in the 
presence of the fermi sea of other quarks. 

The current theory of strong interactions (see Politzer 1974 for a review) contains 
three colours of quarks, and an undetermined number of flavours (U, d, s, c, b, etc). The 
interaction between quarks is by the exchange of coloured vector gluons which take no 
account of flavour. The effective strong interaction.coupling constant g, decreases with 
distance, and at the separations between quarks with which we are concerned here (less 
than one fermi), experience with deep inelastic electron and neutrino scattering 
indicates that g, is small enough for the use of lowest-order perturbation theory. 
Accordingly, we take the effective interaction between two quarks in free space from 

the one-gluon exchange diagram (figure 1). (We assume that non-perturbative instan- 
ton effects are unimportant at these distances (Applequist and Shankar 1978).) If we 
are able to describe the situation by a potential between the quarks, then in the 
non-relativistic limit its form will be 

where as= g,2/47r is the strong fine structure constant, fa (a = 1 , .  . . , 8 )  are the 
generators of the colour group for quarks, and k, i, 1, j are the colour indices of the 
quarks. At order m-*, where m is the quark mass, there are also spin-dependent 
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i , a  f 
Figure 1. One-gluon exchange diagram. 

terms, but the structure in colour space is as above. Since 

(fa)/ci(ta)/j  = i ( ~ k i a / i  + a k j S t i ) - 4 ( S / c i a t j  - a k l ~ i i ) ,  (2) 
there is a repulsive force in the channel symmetric in the colour indices (corresponding 
to the six-dimensional representation of colour SU(3)) and an attractive force in the 
channel antisymmetric in the colour indices (corresponding to the 5 representation of 
colour SU(3)). 

If we estimate the many-body effects of the medium of quarks using random-phase 
approximation (ring diagram approximation), then the structure of the interaction in 
colour space is preserved but the interaction is screened (see Fetter and Walecka 1971). 
Consequently, we will expect Cooper pairs belonging to the 3 of colour SU(3) to be 
formed (since any attractive interaction, no matter how weak, forms bound states in the 
presence of the fermi sea). 

In what follows, we proceed in a non-relativistic fashion. Our justification for this is 
that the distances between quarks in quark matter may be comparable to those in a 
hadron, if the estimates of the density at which the transition to quark matter occurs are 
reliable (Baluni 1978 and references therein). Also, the non-relativistic quark model 
approach has proved successful in discussions of the properties of hadronic states, 
despite the fact that the typical quark momentum is comparable with the quark mass. 
(See, e.g. De Rujula et a1 1975.) The weakness in our argument is that we are not sure 
what mass to assign to quarks in quark matter. Non-relativistic quark models of 
hadronic states give the U and d quarks masses of about 350 MeV, but discussions of 
chiral symmetry breaking, which concentrate on quark mass terms in the Lagrangian, 
give masses of not more than 100 MeV, and perhaps only tens of MeV. Which mass is 
the correct one to use here depends on the difficult and unresolved question of whether 
the transition from hadronic to quark matter in which the quarks become unconfined 
produces a discontinuity in the effective quark masses. If it does, we may need quark 
masses of as little as tens of MeV. If not, then since we have in mind densities close to 
the density of a hadron, the U and d quark masses may differ little from 350 MeV. We 
proceed on this latter assumption. In that case it makes sense to classify the quark 
Cooper pairs by an orbital angular momentum, L, and a spin angular momentum, S. 

The effective quark mass, m*, in the presence of the medium of quarks, may differ 
from m because of many-body effects. However, if we use the Coloumb-like potential 
of equation ( l ) ,  and calculate in random-phase approximation, then a calculation 
analogous to that for the degenerate electron gas (Quinn and Ferrell 1958) gives 

(3) m/m* = 1 - rs(4/3.rr)1’3(2/3.rr)[2 + In (4/3.rr)1’3(rs/2tr)] 
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with the approximation being valid for r, < 1, where r, is the interquark spacing divided 
by the strong Bohr radius, filmccy,. 

For 0 < r, < 1, m/m* differs very little from 1. (For m = 350 MeV, and cy, = 0.3, and 
an interquark spacing of 0.3 fermi, we have r, = 0.2.) 

In the following, weak-coupling BCS theory is used. This is justified because the 
range of energy A E  over which the screened Coulomb-like potential between quarks 
varies is on the scale of ?,EF, so that 

AEI k s  Tc rs( TF/ TA. (4) 
Provided r, is not too small, and TF/Tc = lo3, as for superconductors and 3He, 
AE/kBT,>> 1, and weak-coupling theory is a good approximation. We observe in 
passing that the size of the quark Cooper pair (lo = fioF/vkBTc) will be several hundred 
fermi, compared with a range of the interquark force of the order of a fermi. Thus, just 
as for 3He (see e.g. Leggett 1975), the particles in the Cooper pair spend most of their 
time outside the range of the pairing force. 

In the quark matter core of a neutron star there will be approximately twice as many 
d quarks as U cs. Thus the fermi energies for the two types of quark will be very different 
and we do not expect Cooper pairing of a U quark with a d  quark. We therefore restrict 
attention, in the first instance, to pairing between quarks of the same flavour. In that 
case, the flavour wavefunction is symmetric, and since the colour 5 wavefunction is 
antisymmetric, fermi statistics allow S = 1, L even, and S = 0, L odd. Assuming that, as 
for hadronic states, the lowest value of L is the most tightly bound, we shall consider 
S = 1, L = 0 and S = 0, L = 1. If experience with hadronic states is a good guide (see e.g. 
De Rujula et a1 1975), S =  1, L=O may be the case which is preferred physically. 
However, we err on the side of caution and consider both cases. 

Consider first S = 1, L = 0 Cooper pairs. The superfluid order parameter is 

where, in the many-body theory, aia(k)  annihilates a quark with colour index i, spin 
index cy and wavevector k. For colour 5,  S = 1, Cooper pairs we write 

@ ij,a@ = cijk (i@a@Z)af32ka (6)  
to obtain an order parameter &a which transforms as colour 5 on the row index k and as 
spin triplet on the column index a. Since we want to consider L=O, dka has no 
dependence on n = k/lkl. 

With the aid of a Bogoliubov transformation (Bogoliubov 1958, Valatin 1958) we 
may derive the superfluid free energy density in the weak-coupling BCS approximation. 
In the Ginzburg-Landau region it takes the form 

dn 
dc 

d = [~-ln(l.14co/kBTc)1-'6 
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with eo the effective cut-off of the pairing interaction, and we have retained up to sixth 
order in the order parameter. The quartic terms in the free energy are minimised by any 
order parameter with dtd real. This degeneracy of superfluid phases is resolved by the 
sixth-order terms which uniquely select the phase represented by 

d = I/  J3, (8) 
where I is the identity 3 x 3 matrix. (For convenience in determining possible phases, 
we have changed the normalisation of d so that tr dtd = 1.) 

By analogy with superfluid 3He we shall refer to this as a B-like phase, though the 
rows and columns of the matrix refer to colour and spin, rather than spin and orbital 
angular momentum, and the symmetries of the free energy differ correspondingly. In 
the present case, the free energy is invariant if the order parameter is multiplied on the 
left by a special unitary matrix, or on the right by a special orthogonal matrix, or 
multiplied by a phase factor. Any order parameter 

d = U/./:, (9) 
where U is a general unitary matrix, represents the same phase as equation (8). 

the form 
More generally, the symmetries of the free energy require the quartic terms to take 

F4 = &(frdtd)*+P4fr(dtd)*+P3fr(dtd)(dtd)*.  (10) 
Depending on the relative values of p3 and p4, various phases are possible as shown in 
figure 2. (The techniques of Barton and Moore (1974) are useful here.) By the 
polar-like phase we mean the phase with dll  = 1 and all other entries zero, and by the 
A-like phase we mean the phase with d l l  = l/h, and dlz = i / 6 ,  and all other entries 
zero. (In the present context, the A-like phase and the Al-like phase are equivalent 
because of the unitary symmetry of the free energy.) It is possible that corrections to the 
weak-coupling BCS values pZ = P4 = -P3 cause the polar-like phase to be lower in free 
energy than the B-like phase. We have not carried out the lengthy, and not necessarily 
dependable, calculation of Landau parameters necessary to answer this question. If this 
does happen, there may be more than one superfluid phase transition, since, as 

d 'd  real 

P O '  Polar -like 

Figure 2. Phase diagram for S = 1, L = 0 superfluid quark matter. 

4 +r-$ = P' 
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discussed above, the sixth-order terms in the free energy are minimised by the B-like 
phase, and these will become important at sufficiently low temperatures. 

In the case of S = 0, L = 1 Cooper pairs, we have to consider the superfluidfr 
parameter 

where i and j are colour indices, as before. For colour 3 we write 

$ij = Eijkdk, (12) 

and since we are considering p-wave Cooper pairs we write 

di = Ai,np, 

where 

n = k/lkl 

(13) 

(14) 

and Ai, has no n dependence. 
Ai, transforms as colour 3 on its row index and as an orbit space vector on its column 

index. 
In the Ginzburg-Landau region, the most general set of quartic terms allowed by the 

symmetry of the free energy (under colour and orbital space transformations and 
multiplication of Ai, by a phase factor) is 

(15) 

The situation is exactly analogous to the one discussed above for S= 1, L=O (cf 
equation (10)) and the phase diagram has the same form with the matrix Ai, replacing 
the matrix di,. However, the weak-coupling BCS values of the parameters are in this 
case 

F4 = b2(trAtA)’ + b4tr(AtA)2+ b3tr(AtA)(AtA)*. 

Thus the weak-coupling values uniquely choose a B-like phase (with the rows of the 
matrix signifying colour, and the columns signifying orbital coordinates) without 
appealing to the sixth-order terms. In this case it seems unlikely that the order TJTF 
strong-coupling corrections will change the conclusion. 

Although Cooper pairing of U quarks to d quarks is not likely to occur in neutron star 
cores, rfs discussed above, it may be possible to produce such pairing in heavy-ion 
collisions, by using ions with an equal total number of protons and neutrons and hence 
of U quarks and d quarks. Given that the Cooper pairs are colour 3, the possibilities of 
lowest orbital angular momentum consistent with fermi statistics are 

( I  = 0, s = 0, L = O) ,  ( I  = 0, s = 1, L = l),  

(I= 1, S= 1, L =0) and (I= 1, S=O, L = l),  

where I denotes isospin. Experience with hadronic states suggests that the most tightly 
bound will be ( I = O , S = O ,  L=O). In that case, the order parameter is a three- 
component object transforming as a 5 of colour, which we may choose to have its first 
entry non-zero and all other entries zero. 
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Quark matter superfluidity in a neutron star core can affect the angular momentum 
of the neutron star through the motion of vortex lines, just as for neutron matter 
superfluidity. It can also affect the cooling of the star through its effect on neutrino 
emission (Maxwell e? a1 1977) and the order parameters we have discussed may be 
useful as an input to detailed astrophysical calculations. On the other hand, at the 
densities necessary for quark matter to exist, the early universe is likely to be too hot for 
superfluidity (if we estimate T, = 

Perhaps the best chance of a direct test of quark matter superfluidity is in heavy-ion 
collisions (although there will be complications due to finite size effects; in particular, 
from the size of the Cooper pairs). It may perhaps be possible to study the superfluid 
order in spin space by using hadrons to probe the quark matter system. It may also be 
possible to use techniques analogous to the spin-resonance techniques which have been 
so useful in the case of superfluid 3He (see e.g. Leggett 1975). At order m-2,  where m is 
the quark mass, there are terms arising from one-gluon exchange (figure 1) which 
couple spin space to orbit space, and could in principle lead to spin-resonance effects, in 
the case when L and S are both non-zero. For example, there is a tensor potential 

TF.) 

(171 

(see, for example, Henriques e? a1 1976). However, there will be gradient terms in the 
free energy of the type 

with i and a colour and spin indices, a space index, and p the total mass density. For 
densities close to the critical density for quark matter to be formed, and for systems of 
radius greater than about cm, the contribution of the tensor potential to the free 
energy dominates that of the gradient terms. Thus spin-resonance effects may be 
observable in the quark matter produced by heavy-ion collisions. It might also be 
possible to produce a sample of quark matter with a large enough radius for spin- 
resonance effects, by imploding a tiny quantity of ordinary matter using laser beams, 
though this is likely to be a thought experiment. 
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